Flink

Flink: Union operator on Multiple Streams

Reading Time: 3 minutes Apache Flink offers rich sources of API and operators which makes Flink application developers productive in terms of dealing with the multiple data streams. Flink provides many multi streams operations like Union, Join, and so on. In this blog, we will explore the Union operator in Flink that can combine two or more data streams together. We know in real-time we can have multiple data streams from different sources Continue Reading

Flink: Implementing the Session window.

Reading Time: 3 minutes In the previous blogs, we learned about Tumbling, Sliding, and Count windows in Flink. There is one another useful way to window the data which Flink offers i.e, Session window. So in this blog, we will explore the Session window in detail with an example. In the real world, all the work that we do online- Visiting a website, Clicking around the website, do online Continue Reading

Flink: Implementing the Count Window

Reading Time: 3 minutes In the blog, we learned about Tumbling and Sliding windows which is based on time. In this blog, we are going to learn to define Flink’s windows on other properties i.e Count window. As the name suggests, count window is evaluated when the number of records received, hits the threshold. Count window set the window size based on how many entities exist within that window. For example, if we fixed the count Continue Reading

Flink: Time Windows based on Processing Time

Reading Time: 4 minutes In the previous blog, we talked about Flink’s windows operator, a heart of processing infinite streams. Generally in Flink, after specifying that the stream is keyed or non keyed, the next step is to define a window assigner. The window assigner defines how elements are assigned to windows. Flink provides some useful predefined window assigners like Tumbling windows, Sliding windows, Session windows, Count windows, and Continue Reading

Basic Anatomy of a Flink Program

Reading Time: 3 minutes Hi Folks! Hope you all are safe in the COVID-19 pandemic and learning new tools and tech while staying at home. I also have just started learning a very prominent Big Data framework for stream processing which is  Flink. Flink is a distributed framework and based on the streaming first principle, means it is a real streaming processing engine and implements batch processing as a special case. In Continue Reading

Windows operator: Heart of processing infinite streams in Flink

Reading Time: 3 minutes Apache Flink is an open-source, distributed, Big Data framework for stream and batch data processing. Flink is based on the streaming first principle which means it is a real streaming processing engine and implements batching as a special case. Flink is considered to have a heart and it is the “Windows” operator. It makes Flink capable of processing infinite streams quickly and efficiently. Windows split Continue Reading

Reading Avro files using Apache Flink

Reading Time: 2 minutes In this blog, we will see how to read the Avro files using Flink. Before reading the files, let’s get an overview of Flink. There are two types of processing – batch and real-time. Batch Processing: Processing based on the data collected over time. Real-time Processing: Processing based on immediate data for an instant result. Real-time processing is in demand and Apache Flink is the Continue Reading

Using Apache Flink for Kinesis to Kafka Connect

Reading Time: 3 minutes In this blog, we are going to use kinesis as a source and kafka as a consumer. Let’s get started. Step 1: Apache Flink provides the kinesis and kafka connector dependencies. Let’s add them in our build.sbt: Step 2: The next step is to create a pointer to the environment on which this program runs. Step 3: Setting parallelism of x here will cause all Continue Reading

Flink on Kubernetes

Reading Time: 3 minutes Introduction Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. The design of Flink is such as to run in all common cluster environments, perform computations at in-memory speed and at any scale. There are two Flink’s clusters: Flink session cluster and Flink job cluster. A job cluster is a dedicated cluster that runs a single job. The job is part of Continue Reading

Big Data Landscape explained

Reading Time: 5 minutes Big Data has now evolved into a buzz word and it seems everyone is either working on it or want to work on it. However, most of the people associate Big Data with some of the popular tool sets like Hadoop, Spark, NoSql databases like Hive, Cassandra , HBase etc. HDFS made Big Data popular as it gave us an option to distribute the data Continue Reading

Flinkathon: Guide to setting up a Local Flink Custer

Reading Time: 3 minutes In our previous blog post, Flinkathon: First Step towards Flink’s DataStream API, we created our first streaming application using Apache Flink. It was easy, clean, and concise. However, the real power of Apache Flink is seen on a cluster, where data is processed in a distributed manner, with the advantage of multi-core/multi-memory systems. So, in this blog post, we will see how to set up Continue Reading

Flinkathon: First Step towards Flink’s DataStream API

Reading Time: 3 minutes In our previous blog posts: Flinkathon: Why Flink is better for Stateful Streaming applications? Flinkathon: What makes Flink better than Kafka Streams? We saw why Apache Flink is a better choice for streaming applications. In this blog post, we will explore how easy it is to express a streaming application using Apache Flink’s DataStream API. DataStream API DataStream API is used to develop regular programs Continue Reading

Flinkathon: What makes Flink better than Kafka Streams?

Reading Time: 2 minutes Initially, I would like you all to focus on a few questions before comparing the frameworks:1. Is there any comparison or similarity between Flink and the Kafka?2. What could be better in Flink over the Kafka?3. Is it the problem or system requirement to use one over the other? Before talking about the Flink betterment and use cases over the Kafka, let’s first understand their Continue Reading