Big Data

Flink: Implementing the Session window.

Reading Time: 3 minutes In the previous blogs, we learned about Tumbling, Sliding, and Count windows in Flink. There is one another useful way to window the data which Flink offers i.e, Session window. So in this blog, we will explore the Session window in detail with an example. In the real world, all the work that we do online- Visiting a website, Clicking around the website, do online Continue Reading

Flink: Implementing the Count Window

Reading Time: 3 minutes In the blog, we learned about Tumbling and Sliding windows which is based on time. In this blog, we are going to learn to define Flink’s windows on other properties i.e Count window. As the name suggests, count window is evaluated when the number of records received, hits the threshold. Count window set the window size based on how many entities exist within that window. For example, if we fixed the count Continue Reading

Spark SQL in Delta Lake 0.7.0

Reading Time: 3 minutes Nowadays Delta lake is a buzz word in the Big Data world, especially among the spark developers because it relegates lots of issues found in the Big Data domain. Delta Lake is an open-source storage layer that brings reliability to data lakes. Delta Lake provides ACID transactions, scalable metadata handling, and unifies streaming and batch data processing. It is evolving day by day and adds cool features in its every release. Continue Reading

Basic Anatomy of a Flink Program

Reading Time: 3 minutes Hi Folks! Hope you all are safe in the COVID-19 pandemic and learning new tools and tech while staying at home. I also have just started learning a very prominent Big Data framework for stream processing which is  Flink. Flink is a distributed framework and based on the streaming first principle, means it is a real streaming processing engine and implements batch processing as a special case. In Continue Reading

Windows operator: Heart of processing infinite streams in Flink

Reading Time: 3 minutes Apache Flink is an open-source, distributed, Big Data framework for stream and batch data processing. Flink is based on the streaming first principle which means it is a real streaming processing engine and implements batching as a special case. Flink is considered to have a heart and it is the “Windows” operator. It makes Flink capable of processing infinite streams quickly and efficiently. Windows split Continue Reading

Stateful Streaming in Spark

Reading Time: 4 minutes Apache Spark is a fast and general-purpose cluster computing system. In Spark, we can do the batch processing and stream processing as well. It does near real-time processing. It means that it processes the data in micro-batches. I have discussed more Spark Streaming in my previous blog. Now in this blog, I’ll discuss Stateful Streaming in Spark. So let’s start !! What is Stateful Streaming? Continue Reading

Delta Lake: Schema Enforcement & Evolution

Reading Time: 4 minutes Nowadays data is constantly evolving and changing. As well as the business problems and requirements are evolving, the shape or the structure of the data is also changing. When that happens, we want to be in control of how the data or schema changes. But how we can achieve this? Delta Lake has good ways to control how schema changes. With Delta Lake, users have Continue Reading

Knime Analytics Platform: A dream for a data scientist

Reading Time: 3 minutes In this blog, we are going to see, what is the Knime analytics platform and its important features to create an analytics workflow in an easy way. Introduction to Knime Analytics Platform KNIME is a platform built for powerful analytics on a GUI based workflow. This means you do not have to know how to code to be able to work using KNIME and derive Continue Reading

Apache Spark: Delta Lake as a Solution – Part II

Reading Time: 3 minutes Well, we have already covered the missing features in Apache Spark & also the causes of the issue in executing Delta Lake in Part1. However, today we will be talking about What Delta Lake is & how it provides the solution to all those problems discussed herein Delta Lake as a Solution: Part1.As we all know that Spark is just a processing engine, it doesn’t Continue Reading

Apache Spark: Delta Lake as a Solution – Part I

Reading Time: 3 minutes Today, everyone is talking about Delta Lake. Why? Ever tried to find the answer to this question? Yes or No doesn’t matter, don’t worry here in Part1 we will be discussing the same & also will be targetting the following questions: What are the features missing from Apache Spark? What kind of issues it causes in executing Data Lake? Answering the above questions will definitely Continue Reading

Amazon EMR

Reading Time: 3 minutes Businesses worldwide are discovering the power of new big data processing and analytics frameworks like Apache Hadoop and Apache Spark, but they are also discovering some of the challenges of operating these technologies in on-premises data lake environments. They may also have concerns about the future of their current distribution vendor. Common problems of on-premises big data environments include a lack of agility, excessive costs, Continue Reading

Apache Spark: Tricks to Increase Job Performance

Reading Time: 2 minutes Apache Spark is quickly adopting the Real-world and most of the companies like Uber are using it in their production. Spark is gaining its popularity in the market as it also provides you with the feature of developing Streaming Applications and doing Machine Learning, which helps companies get better results in their production along with proper analysis using Spark. Although companies are using Spark in Continue Reading

Spark: ACID Transaction with Delta Lake

Reading Time: 3 minutes Spark doesn’t provide some of the most essential features of a reliable data processing system such as Atomic APIs and ACID transactions as discussed in the blog Spark: ACID compliant or not. Spark welcomes a solution to the problem by working with Delta Lake. Delta Lake plays an intermediary service between Apache Spark and the storage system. Instead of directly interacting with the storage layer, Continue Reading