Machine Learning

MachineX: What is K-Fold Cross Validation?

In this blog, we are going to explore and learn about K-Fold Cross Validation. K-Fold Cross Validation is a statistical method to evaluate a Machine Learning model’s performance. So, to understand what K-Fold Cross Validation is, we first need to understand what evaluating a model means, and why do we need to do that.

MachineX: Logistic Regression with KSAI

Logistic Regression, a predictive analysis, is mostly used with binary variables for classification and can be extended to use with multiple classes as results also. We have already studied the algorithm in deep with this blog. Today we will be using KSAI library to build our logistic regression model. Setup

MachineX: Association Rule Learning with KSAI

In many of my previous blogs, I have posted about Association Rule Learning, what it’s about and how it is performed. In this blog, we are going to use Association Rule Learning to actually see it in action, and for this purpose, we are going to use KSAI, a machine learning library purely written in Scala. So, let’s begin. Adding KSAI to your project You Continue Reading

MachineX: A tour to KSAI – Neural Networks

In this blog we would look into how we can use KSAI; A machine learning library purely written in Scala using most of its feature and functional aspects of programming, you can read more about the library at KSAI Wiki, alternatively you can even fork the project from here, KSAI has a rich set of algorithms that address some of the vital problems in classification, Continue Reading

MachineX: An Introduction to KSAI, a machine learning library

Take a closer look at Linkedin or any media platform for a couple of minutes, you’ll find that the hot topic in the technology section nowadays is Machine Learning and Artificial Intelligence. Why Machine learning and artificial intelligence? Well needless to say it is transforming the world like anything. People are doing good in business by predicting different aspects, doctors are doing good in medical Continue Reading

Code Combat II : The Code Battle For The Vanguard Continues…

“If you can dream it, you can do it. ”  -Walt Disney For some coding is a job. For some, it is an exercise. But for us folks here at Knoldus, it’s a Passion. So in order to bring a twist in the daily work schedule, Knoldus held an overnight Hackathon competition within the organization on 18th May 2018 which presented an opportunity for every Knolder(employees Continue Reading

KnolX: NAIVE BAYES CLASSIFIER

Hi all, Knoldus has organized a 30 min session on 27th April 2018 at 4:00 PM. The topic was NAIVE BAYES CLASSIFIER. Many people have joined and enjoyed the session. I am going to share the slides here. Please let me know if you have any question related to linked slides.

KnolX: Machine Learning with Artificial Neural Networks

Hi all, Knoldus has organized a 30 min session on 8th December 2017 at 4:15 PM. The topic was Machine Learning with Artificial Neural Networks. Many people have joined and enjoyed the session. I am going to share the slides here. Please let me know if you have any question related to linked slides.   Machine Learning with Artificial Neural Networks from Knoldus Inc. Here’s the video of the Continue Reading

MachineX: Total Support Tree for Association Rule Generation

In our previous blogs on Association Rule Learning, we have seen the FP-Tree and the FP-Growth algorithm. We also generated the frequent itemsets using FP-Growth. But a problem arises when we try to mine the association rules out of these frequent itemsets. Generally, the number of frequent itemsets is massive and to run an algorithm on them becomes very memory inefficient. So, to store these Continue Reading

MachineX: Frequent Itemset generation with the FP-Growth algorithm

In our previous blog, MachineX: Understanding FP-Tree construction, we discussed the FP-Tree and its construction. In this blog, we will be discussing the FP-Growth algorithm, which uses FP-Tree to extract frequent itemsets in the given dataset. FP-growth is an algorithm that generates frequent itemsets from an FP-tree by exploring the tree in a bottom-up fashion. We will be picking up the example we used in Continue Reading

MachineX: Understanding FP-Tree construction

In my previous blog, MachineX: Why no one uses apriori algorithm for association rule learning?, we discussed one of the first algorithms in association rule learning, apriori algorithm. Although even after being so simple and clear, it has some weaknesses as discussed in the above-mentioned blog. A significant improvement over the apriori algorithm is FP-Growth algorithm. To understand how FP-Growth algorithm helps in finding frequent Continue Reading

MachineX: Why no one uses apriori algorithm for association rule learning?

In my previous blog, MachineX: Two parts of Association Rule Learning, we discussed that there are two parts in performing association rule learning, namely, frequent itemset generation and rule generation. In this blog, we are going to talk about one of the algorithms for frequent itemset generation, viz., Apriori algorithm. The Apriori Principle Apriori algorithm uses the support measure to eliminate the itemsets with low Continue Reading

Knoldus Pune Careers - Hiring Freshers

Get a head start on your career at Knoldus. Join us!