Streaming

Stateful stream processing with Apache Flink(part 1): An introduction

Reading Time: 4 minutes Apache Flink, a 4th generation Big Data processing framework provides robust stateful stream processing capabilities. So, in a few parts of the blogs, we will learn what is Stateful stream processing. And how we can use Flink to write a stateful streaming application. What is stateful stream processing? In general, stateful stream processing is an application design pattern for processing an unbounded stream of events. Continue Reading

A Quick Demo: Kafka to Flink to Cassandra

Reading Time: 3 minutes Hi Folks!! In this blog, we are going to learn how we can integrate Flink with Kafka and Cassandra to build a simple streaming data pipeline. Apache Flink is a framework and distributed processing engine. it is used for stateful computations over unbounded and bounded data streams.Kafka is a scalable, high performance, low latency platform. It allows reading and writing streams of data like a messaging system.Cassandra: A distributed and wide-column Continue Reading

Flink: Join two Data Streams

Reading Time: 3 minutes Apache Flink offers rich sources of API and operators which makes Flink application developers productive in terms of dealing with the multiple data streams. Flink provides many multi streams operations like Union, Join, and so on. In this blog, we will explore the Window Join operator in Flink with an example. It joins two data streams on a given key and a common window. Let say we have one stream which contains salary information of all Continue Reading

Flink: Union operator on Multiple Streams

Reading Time: 3 minutes Apache Flink offers rich sources of API and operators which makes Flink application developers productive in terms of dealing with the multiple data streams. Flink provides many multi streams operations like Union, Join, and so on. In this blog, we will explore the Union operator in Flink that can combine two or more data streams together. We know in real-time we can have multiple data streams from different sources Continue Reading

Flink: Implementing the Session window.

Reading Time: 3 minutes In the previous blogs, we learned about Tumbling, Sliding, and Count windows in Flink. There is one another useful way to window the data which Flink offers i.e, Session window. So in this blog, we will explore the Session window in detail with an example. In the real world, all the work that we do online- Visiting a website, Clicking around the website, do online Continue Reading

Basic Anatomy of a Flink Program

Reading Time: 3 minutes Hi Folks! Hope you all are safe in the COVID-19 pandemic and learning new tools and tech while staying at home. I also have just started learning a very prominent Big Data framework for stream processing which is  Flink. Flink is a distributed framework and based on the streaming first principle, means it is a real streaming processing engine and implements batch processing as a special case. In Continue Reading

Windows operator: Heart of processing infinite streams in Flink

Reading Time: 3 minutes Apache Flink is an open-source, distributed, Big Data framework for stream and batch data processing. Flink is based on the streaming first principle which means it is a real streaming processing engine and implements batching as a special case. Flink is considered to have a heart and it is the “Windows” operator. It makes Flink capable of processing infinite streams quickly and efficiently. Windows split Continue Reading

Using Vertica with Spark-Kafka: Write using Structured Streaming

Reading Time: 3 minutes In two previous blogs, we explored about Vertica and how it can be connected to Apache Spark. The first blog in this mini series was about reading data from Vertica using Spark and saving that data into Kafka. The next blog explained the reverse flow i.e. reading data from Kafka and writing data to Vertica but in a batch mode. i.e reading data from Kafka Continue Reading

Flinkathon: What makes Flink better than Kafka Streams?

Reading Time: 2 minutes Initially, I would like you all to focus on a few questions before comparing the frameworks:1. Is there any comparison or similarity between Flink and the Kafka?2. What could be better in Flink over the Kafka?3. Is it the problem or system requirement to use one over the other? Before talking about the Flink betterment and use cases over the Kafka, let’s first understand their Continue Reading

Kafka: Consumer – Push vs Pull approach

Reading Time: 2 minutes Have you ever thought about the Push vs Pull approach for the system, which one suits or solves which problem? Another Question why did Kafka choose Pull over Push design for Consumers? Before talking about the Kafka approach, whether the Broker should push the data to consumer or consumer should pull from Kafka? Let’s first understand both of the approaches, as each one has its Continue Reading

KSQL: Getting started with Streaming SQL for Apache Kafka

Reading Time: 3 minutes KSQL is a SQL streaming engine for Apache Kafka which puts the power of stream processing into the hands of anyone who knows SQL. In this blog, we shall understand the basics of KSQL and how to get it up and running it in the easiest way on your local machines. What is KSQL? KSQL is a is distributed, scalable, reliable, and real time SQL Continue Reading

Spark Streaming vs. Structured Streaming

Reading Time: 6 minutes Fan of Apache Spark? I am too. The reason is simple. Interesting APIs to work with, fast and distributed processing, unlike map-reduce no I/O overhead, fault tolerance and many more. With this much, you can do a lot in this world of Big data and Fast data. From “processing huge chunks of data” to “working on streaming data”, Spark works flawlessly in all. In this Continue Reading

Is Apache Flink the future of Real-time Streaming?

Reading Time: 5 minutes In our last blog, we had a discussion about the latest version of Spark i.e 2.4 and the new features that it has come up with. While trying to come up with various approaches to improve our performance, we got the chance to explore one of the major contenders in the race, Apache Flink. Apache Flink is an open source platform which is a streaming Continue Reading