Spark

Amazon EMR

Reading Time: 3 minutes Businesses worldwide are discovering the power of new big data processing and analytics frameworks like Apache Hadoop and Apache Spark, but they are also discovering some of the challenges of operating these technologies in on-premises data lake environments. They may also have concerns about the future of their current distribution vendor. Common problems of on-premises big data environments include a lack of agility, excessive costs, Continue Reading

Apache Spark: Tricks to Increase Job Performance

Reading Time: 2 minutes Apache Spark is quickly adopting the Real-world and most of the companies like Uber are using it in their production. Spark is gaining its popularity in the market as it also provides you with the feature of developing Streaming Applications and doing Machine Learning, which helps companies get better results in their production along with proper analysis using Spark. Although companies are using Spark in Continue Reading

Spark: ACID Transaction with Delta Lake

Reading Time: 3 minutes Spark doesn’t provide some of the most essential features of a reliable data processing system such as Atomic APIs and ACID transactions as discussed in the blog Spark: ACID compliant or not. Spark welcomes a solution to the problem by working with Delta Lake. Delta Lake plays an intermediary service between Apache Spark and the storage system. Instead of directly interacting with the storage layer, Continue Reading

Time Travel: Data versioning in Delta Lake

Reading Time: 3 minutes In today’s Big Data world, we process large amounts of data continuously and store the resulting data into data lake. This keeps changing the state of the data lake. But, sometimes we would like to access a historical version of our data. This requires versioning of data. Such kinds of data management simplifies our data pipeline by making it easy for professionals or organizations to Continue Reading

Data Lake – Build it in Phases

Reading Time: 3 minutes Data Lake – How to build a data lake and what are the phases involved in the same.

Apache Spark: Read Data from S3 Bucket

Reading Time: < 1 minute Amazon S3 Accessing S3 Bucket through Spark Edit spark-default.conf file You need to add below 3 lines consists of your S3 access key, secret key & file system

Apache Spark: Repartitioning v/s Coalesce

Reading Time: 3 minutes Does partitioning help you increase/decrease the Job Performance? Spark splits data into partitions and computation is done in parallel for each partition. It is very important to understand how data is partitioned and when you need to manually modify the partitioning to run spark applications efficiently. Now, diving into our main topic i.e Repartitioning v/s Coalesce What is Coalesce? The coalesce method reduces the number Continue Reading

Understanding the working of Spark Driver and Executor

Reading Time: 4 minutes This blog pertains to Apache SPARK, where we will understand how Spark’s Driver and Executors communicate with each other to process a given job. So let’s get started. First, let’s see what Apache Spark is. The official definition of Apache Spark says that “Apache Spark™ is a unified analytics engine for large-scale data processing.” It is an in-memory computation processing engine where the data is Continue Reading

Understanding how Spark runs on YARN with HDFS

Reading Time: 6 minutes This blog pertains to Apache SPARK and YARN (Yet Another Resource Negotiator), where we will understand how Spark runs on YARN with HDFS. So let’s get started. First, let’s see what Apache Spark is. The official definition of Apache Spark says that “Apache Spark™ is a unified analytics engine for large-scale data processing.” It is an in-memory computation processing engine where the data is kept Continue Reading

Understanding Spark’s Logical and Physical Plan in layman’s term

Reading Time: 5 minutes This blog pertains to Apache SPARK 2.x, where we will find out how Spark SQL works internally in layman’s terms and try to understand what is Logical and Physical Plan. Also we will be looking into Catalyst Optimizer. So let’s get started. First let’s see what Apache Spark is. The official definition of Apache Spark says that “Apache Spark™ is a unified analytics engine for large-scale Continue Reading

Apache Spark

Deep Dive into Apache Spark Transformations and Action

Reading Time: 4 minutes In our previous blog of Apache Spark, we discussed a little about what Transformations & Actions are? Now we will get deeper into the topic and will understand what actually they are & how they play a vital role to work with Apache Spark? What is Spark RDD? Spark introduces the concept of an RDD (Resilient Distributed Dataset), an immutable fault-tolerant, distributed collection of objects Continue Reading